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Hyperbolic Conformal Geometry with Clifford
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In this paper, we study hyperbolic conformal geometry following a Clifford
algebraic approach. Similar to embedding an affine space into a one-dimensional
higher linear space, we embed the hyperboloid model of the hyperbolic n-space
in 5n,1 into 5n11,1. The model is convenient for the study of hyperbolic conformal
properties. Besides investigating various properties of the model, we also study
conformal transformations using their versor representations.

1. INTRODUCTION

Hyperbolic geometry is an important branch of mathematics and physics.
Among various models of the hyperbolic n-space, the hyperboloid model,
which identifies the space with a branch *n of the set

$n 5 {x P 5n,1 . x ? x 5 2 1} (1.1)

has the following features:

• The model is isotropic in that at every point of *n, the metric of the
tangent space is the same.

• A hyperbolic line AB is the intersection of *n with the plane deter-
mined by vectors A, B through the origin. When viewed from the
origin, line AB can be identified with a projective line in 3n. Similarly,
a hyperbolic r-plane can be identified with a projective r-plane in
3n. Here 0 # r # n 2 1. The geometry of r-planes can therefore
be studied within the framework of linear subspaces in 5n,1

• The tangent direction of a line l at a point A is a vector orthogonal

1 This work was supported partially by the DFG and AvH Foundations of Germany, Grant
NKBRSF of China, the Hundred People Program of the Chinese Academy of Sciences, and
the Qiu Shi Science and Technology Foundations of Hong Kong.

2 Academy of Mathematics and System Science, Academia Sinica, Beijing 100080, China;
e-mail: hli@informatik.uni-kiel.de, hli@mmrc.iss.ac.cn

81
0020-7748/01/0100-0081$19.50/0 q 2001 Plenum Publishing Corporation



82 Li

to vector A in the plane determined by l and the origin. The angle
of two intersecting lines is the Euclidean angle of their tangent
directions at the intersection. This is the conformal property of the
model.

• Let p, q be two points and let d( p, q) be their hyperbolic distance.
Then p ? q 5 2 cosh d( p, q). This helps to transform a geometric
problem on distances into an algebraic problem on inner products.

• A generalized circle is either a hyperbolic circle, a horocycle, or a
hypercycle (equidistant curve). A generalized circle is the intersection
of *n with an affine plane in 5n,1. Similarly, a generalized r-sphere
is the intersection of *n with an affine (r 1 1)-plane. So the geometry
of generalized r-spheres can be studied within the framework of
affine subspaces in 5n,1.

• The hyperbolic isometries are the orthogonal transformations of 5n,1

which leave *n invariant. In particular, they are all linear
transformations.

• The model is similar to that of the spherical n-space in 5n11.

These features imply that we can use Clifford algebra, in particular, the
version formulated in Hestenes and Sobczyk (1984), to study the hyperboloid
model. A study on the two-dimensional case is carried out in Li (1997).

Similar to studying an affine n-space by embedding it into a linear (n 1
1)-space as a hyperplane, we can study hyperbolic conformed properties of
the hyperboloid model by embedding it into the null cone of the space 5n11,1.
This model of hyperbolic n-space is called the homogeneous model in Li et
al. (2000). It simplifies the study of hyperbolic conformal geometry.

Moreover, the homogeneous model provides a universal algebraic model
for three geometries: Euclidean, spherical, and hyperbolic ones. In the univer-
sal model, different geometries correspond to different geometric interpreta-
tions of the same algebraic representation and the transfer from one geometry
to another is realized by rescaling null vectors.

In this paper, we first review the hyperboloid model, then study properties
of the homogeneous model. We also study conformal transformations using
their versor representations. We use the terminology on hyperbolic geometry
in Iversen (1992), Ratcliffe (1994), and Li (1997) and the notation for Clifford
algebra as found in Hestenes and Sobczyk (1984).

2. THE HYPERBOLOID MODEL

For hyperbolic conformal geometry, the space *n is not big enough,
and we need its double covering space $n defined by (1.1), called the double-
hyperbolic n-space, or the hyperboloid model of the double-hyperbolic n-
space. It has two branches, denoted by *n and 2*n, respectively.
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Definition 2.1. An oriented generalized point of $n is either a point, an
end, or a direction. A point is an element in $n. An end (or oriented point
at infinity) is a null half 1-space of 5n,1. A direction (or oriented imaginary
point) is a Euclidean half 1-space of 5n,1. A point at infinity is a null 1-
space of 5n,1.

Algebraically, any oriented generalized point can be represented by a
vector in 5n,1; two vectors represent the same oriented generalized point if
and only if they differ by a positive scale. A point at infinity is represented
by a null vector, and two null vectors represent the same point at infinity if
and only if they differ by a nonzero scale.

Let c be a point at infinity, and let p, q be points. Then p, q are on the
same branch of $n if and only if c ? pc ? q . 0.

Definition 2.2. 1. Let c be an end, p P *n. If c ? p , 0, c is called an
end of the branch *n; otherwise it is called an end of the branch 2*n.

2. An r-plane of $n is the intersection of $n with an (r 1 1)-space of 5n,1.
3. The sphere at infinity of $n is the whole set of points at infinity. An

r-sphere at infinity of $n is the intersection of the sphere at infinity with an
(r 1 1)-plane of $n, also called the sphere at infinity of the (r 1 1)-plane.

In &n,1, an r-plane is represented by an (r 1 1)-blade corresponding
to the (r 1 1)-space containing the r-plane. An (n 2 1)-plane is called
a hyperplane.

Definition 2.3. A generalized sphere is either a sphere, horosphere, or
a hypersphere. It is determined by a pair (c, r), where c is a vector in 5n,1

representing an oriented generalized point, called the center of the generalized
sphere, and r . 0 is the generalized radius.

1. When c is a point, the set {p P $n.p ? c 5 2(1 1 r)} is called a
sphere. It is on the same branch with point c.

2. When c is an end, the set {p P $n.p ? c 5 2r} is called a horosphere.
It is on the same branch with the end c.

3. When c is a direction, the set {p P $n.p ? c 5 2 r} is called a
hypersphere. The hyperplane of $n orthogonal to c is called the axis of
the hypersphere.

Definition 2.4. 1. A generalized r-sphere is a generalized sphere in an
(r 1 1)-plane which is taken as a double-hyperbolic (r 1 1)-space.

2. A total sphere of $n is either a generalized sphere, a hyperplane, or
the sphere at infinity. A total r-sphere is an r-dimensional generalized sphere,
plane, or sphere at infinity.
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3. THE HOMOGENEOUS MODEL

Let a0 be a fixed vector in 5n11,1, a2
0 5 1. The space represented by

a,
0 is Minkowski, denoted by 5n,1. The mapping F: x ° x 2 a0 maps $n

in a one-to-one manner onto the set

1n
a0 5 {x P 5n11,1.x ? x 5 0, x ? a0 5 21} (3.2)

The set 1n
a0, together with the mapping F, is called the homogeneous model

of the double-hyperbolic n-space.
In this model, an end or point at infinity is represented by a null vector

orthogonal to a0; a direction is represented by a vector of unit square orthogo-
nal to a0.

3.1. Representation of Total Spheres

Let p, q be null vectors representing two points on the same branch of
$n. Let d( p, q) be the hyperbolic distance between the two points. Then p ?
q 5 1 2 cosh d( p, q). By this equality and Definition 2.3, we get the
following result.

Lemma 3.1. 1. A point p is on the sphere (c, r), when p, c are understood
to be null vectors representing the points, if and only if p ? c 5 2r.

2. A point p is on the horosphere (or hypersphere) (c, r), where p
is understood to be the null vector representing the point, if and only if
p ? c 5 2r.

The following is the first main theorem on the homogeneous model.

Theorem 3.2. Let Br21,1 be a Minkoswski r-blade in &n11,1, 2 # r #
n 1 1. Then Br21,1 represents a total (r 2 2)-sphere: a point represented by
a null vector p is on the total (r 2 2)-sphere if and only if p ∧ Br21,1 5 0.

1. If a0 ? Br21,1 5 0, then Br21,1 represents an (r 2 2)-sphere at infinity.
2. If a0 ? Br21,1 is Euclidean, then Br21,1 represents an (r 2 2)-sphere.
3. If a0 ? Br21,1 is degenerate, then Br21,1 represents an (r 2 2)-

horosphere.
4. If a0 ? Br21,1 is Minkowski, but a0 ∧ Br21,1 Þ 0, then Br21,1 represents

an (r 2 2)-hypersphere.
5. If a0 ∧ Br21,1 5 0, then Br21,1 represents an (r 2 2)-plane.

When r 5 n 1 1, the dual form of the above theorem is as follows:

Theorem 3.3. Let s be a vector of positive signature in 5n11,1; then s,

represents a total sphere. A point represented by a null vector p is on the
total sphere if and only if p ? s 5 0.
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1. If a0 ∧ s 5 0, then s, represents the sphere at infinity. The sphere
at infinity is represented by a,

0 .
2. If a0 ∧ s is Minkowski, then s, represents a sphere. The sphere (c, r)

is represented by (c 2 ra0),, where c is a null vector representing the
point.

3. If a0 ∧ s is degenerate, then s, represents a horosphere. The horo-
sphere (c, r) is represented by (c 2 ra0),.

4. If a0 ∧ s is Euclidean, but a0 ? s Þ 0, then s, represents a hypersphere.
The hypersphere (c, r) is represented by (c 2 ra0),.

5. If a0 ? s 5 0, then s, represents a hyperplane. A hyperplane with
normal direction c is represented by c,.

Proof. We prove Theorem 3.3 only. Theorem 3.2 can be proved using
Theorem 3.3.

1. If a0 ∧ s 5 0, by definition, any null vector in the space s, represents
a point at infinity, and vice versa.

2. If a0 ∧ s is Minkowski, then a0 ? s Þ 0. Let e be the sign of a0 ? s. Let

c 5 2e
P'

a0(s)

.P'
a0(s).

, r 5
.a0 ? s.
.a0 ∧ s.

2 1 (3.3)

Then c is a point, r . 0, as .a0 ∧ s.2 5 (a0 ? s)2 2 s2 , (a0 ? s)2. Let s8 5
2es/.a0 ∧ s.. Then s8 5 c 2 (1 1 r)a0 5 c 2 ra0, where c 5 c 2 a0. A
point represented by a null vector p is on the sphere (c, r) if and only if p ?
s8 5 0, which is equivalent to p ? s 5 0.

3. If a0 ∧ s is degenerate, then .a0 ? s. 5 .s. Þ 0. Let e be the sign of
a0 ? s. Let

c 5 2eP'
a0(s), r 5 .a0 ? s. 5 .s. (3.4)

Then c is an end, r . 0. Let s8 5 2es. Then s8 5 c 2 ra0. A point represented
by a null vector p is on the horosphere (c, r) if and only if p ? s 5 0.

4. If a0 ∧ s is Euclidean, but a0 ? s Þ 0, let e be the sign of a0 ? s. Let

c 5 2 e
P'

a0(s)

.P'
a0(s).

, r 5
.a0 ? s.
.a0 ∧ s.

(3.5)

Then c is a direction, r . 0. Let s8 5 2es/.a0 ∧ s.. Then s8 5 c 2 ra0. A
point represented by a null vector p is on the hypersphere (c, r) if and only
if p ? s 5 0.

5. If a0 ? s 5 0, then a point represented by a null vector p is on the
hyperplane normal to s if and only if p ? s 5 0. n
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3.2. Relation Between Two Total Spheres

Definition 3.1. 1. Two hyperplanes are said to be parallel if their spheres
at infinity have one and only one common point at infinity. They are said to
be ultraparallel if they have a unique common perpendicular line.

2. Two spheres (or horospheres, or hyperspheres) are said to be concentric
if their centers are collinear. Two hyperspheres are said to be tangent at
infinity if they do not intersect and their axes are parallel.

3. Two hyperspheres are said to be same-sided if their axes are either
identical or do not intersect, and for any line intersecting both hyperspheres
and both axes at points p1, p2, q1, q2 on the same branch of $n, the order of
p1, q1 is the same as the order of p2, q2 on the line.

Theorem 3.4. Let s,
1 , s,

2 represent two distinct total spheres other than
the sphere at infinity of $n.

1. If a0 ∧ s1 ∧ s2 5 0, the two total spheres are concentric spheres,
horospheres, or hyperspheres if and only if a0 ? (s1 ∧ s2) is negative-
squared, null, or positive-squared, respectively.

2. If s1 ∧ s2 is Euclidean, a0 ∧ s1 ∧ s2 Þ 0, and not both total spheres
are hyperplanes, they intersect and the intersection is the generalized
(n 2 2)-sphere (s1 ∧ s2),.

3. If s1 ∧ s2 is degenerate, a0 ∧ s1 ∧ s2 Þ 0, and not both total spheres
are hyperplanes, they are tangent to each other at the point or point
at infinity corresponding to null vector Ps1(s2).

4. If s1 ∧ s2 is Minkowski, a0 ∧ s1 ∧ s2 Þ 0, and not both total spheres
are hyperplanes, they do not intersect. There is a unique pair of
points or a point and a point at infinity that are inversive with
respect to both total spheres.

5. If both total spheres are hyperplanes, they intersect, are parallel, or
ultraparallel if and only if s1 ∧ s2 is Euclidean, degenerate, or
Minkowski, respectively.

The proof is based upon the fact that the intersection of the two spaces
s,

1 , s,
2 corresponds to the blade s,

1 ∨ s,
2 5 (s1 ∧ s2),, which is Minkowski,

degenerate, or Euclidean if and only if the number of null 1-subspaces is 2,
1, or 0, respectively.

More specific conclusions can be established on the intersections and
tangencies of pairs of total spheres. Below we present a theorem on pairs
of hyperspheres.

Lemma 3.5. Let c,
1 , c,

2 be two nonintersecting hyperplanes. Let p1, p2

be points on the same branch of $n such that p1 is on c,
1 and p2 is on c,

2 .
Then C 5 c1 ? c2 p1 ? c2 p2 ? c1 , 0.
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Proof. Since the hyperplanes do not intersect, c1 ? c2 Þ 0 and p1 ? c2

Þ 0 for any point p1 on hyperplane c,
1 . Similarly, p2 ? c1 Þ 0 for any point

p2 on hyperplane c,
2 . So C Þ 0 and its sign depends on c1, c2 only.

When the hyperplanes are ultraparallel, let p1p2 be the common perpen-
dicular line, p1, p2 be the intersections of the line with the two hyperplanes
on the same branch of $n. Then

p1 5 6
c1 (c1 ` c2)

.c1 ` c2.
, p2 5 6

c1? c2

.c1 ? c2.
c2 (c1 ` c2)

.c1 ` c2.
(3.6)

C 5 2.c1 ? c2. .c1 ` c2. , 0 (3.7)

When they are parallel, since C is a continuous function of its variables, C #
0. As C Þ 0, we get C , 0. n

Lemma 3.6. Two hyperspheres (c1, r1) and (c2, r2) are same-sided if
and only if c1 ? c2 $ 1.

Proof. Let there be a line intersecting both hyperspheres and both axes
at points p1, p2, q1, q2 on a branch of $n. Then

pi ? ci 5 2ri , qi ? ci 5 0, for i 5 1, 2 (3.8)

If the two axes do not intersect, then (c1 ∧ c2)2 5 (c1 ? c2)2 2 1 $ 0, so
.c1 ? c2. $ 1. Since q1 Þ q2, p1 ∧ q1 5 lq1 ∧ q2. Making inner product on
both sides with c1 and applying (3.8), we get l 5 r1/q2 ? c1. Similarly, we
have p2 ∧ q2 5 mq1 ∧ q2, where m 5 2r2/q1 ? c2. The pair p1, q1 have the
same order as the pair p2, q2 on the line if and only if p1 ∧ q1 and p2 ∧ q2

have the same orientation, which is equivalent to

lm 5 2
r1 r2

q2 ? c1 q1 ? c2
. 0 (3.9)

By Lemma 3.5, lm/c1 ? c2 . 0. So lm . 0 if and only if c1 ? c2 . 0,
or more accurately, c1 ? c2 $ 1.

If the two axes intersect, then .c1 ? c2. , 1, and c1 ? c2 $ 1 is not satisfied.
If the two axes are identical, then q1 5 q2 5 q, c1 5 ec2, where e 5

61. In particular, .c1 ? c2. 5 1. Let a be a tangent vector of the line at point
q; then a ? q 5 0 and a ∧ q Þ 0. Similar to the nonintersecting case, we get

p1 ∧ q 5 2
r1

ea ? c2
a ∧ q, p2 ∧ q 5 2

r2

a ? c2
a ∧ q (3.10)

p1 ∧ q1 and p2 ∧ q2 have the same orientation if and only if e 5 1, or
equivalently, c1 ? c2 5 1. n

Theorem 3.7. Let s,
1 , s,

2 represent two distinct hyperspheres.
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1. If the two hyperspheres intersect, then (a) if their axes are ultraparal-
lel, the intersection is an (n 2 2)-sphere; (b) if their axes are parallel,
the intersection is an (n 2 2)-horosphere; and (c) if their axes
intersect, the intersection is an (n 2 2)-hypersphere. The center and
radius of the intersection are the same as those of the generalized
sphere (Ps1∧s2(a0)),.

2. If the two hyperspheres are tangent, their axes are parallel or ultrapar-
allel. The tangency occurs at infinity if and only if the hyperspheres
have parallel axes and equal radii, and are same-sided.

3. If the two hyperspheres neither intersect nor are tangent, their axes
are ultraparallel.

Proof. Let si 5 ci 2 ri a0 for i 5 1, 2, where ci ? a0 5 0, c2
i 5 1, and

ri . 0.
1. When the two hyperspheres intersect, then (s1 ∧ s2)2 , 0. The Minkow-

ski blade (Ps1∧s2(a0)), represents a generalized sphere, since neither a0 ?
(Ps1∧s2(a0)), nor a0 ∧ (Ps1∧s2(a0)), equals zero. Using the formula

(s1 ∧ s2), 5
(s1 ∧ s2)2

(a0 ? (s1 ∧ s2))2 (a0 ? (s1 ∧ s2))(Ps1∧s2(a0)), (3.11)

we get that the total (n 2 2)-sphere (s1 ∧ s2), is the intersection of the
hyperplane (a0 ? (s1 ∧ s2)), with the generalized sphere (Ps1∧s2(a0)),. Since

P'
a0(Ps1∧s2(a0)) ? (a0 ? (s1 ∧ s2)) 5 Pa0(Ps1∧s2(a0)) ? (a0 (3.12)

? (s1 ∧ s2)) 5 0

the center of the generalized sphere is in the hyperplane. Therefore, (s1 ∧
s2), is a generalized (n 2 2)-sphere whose center and radius are the same
as those of (Ps1∧s2(a0)),. The intersection is an (n 2 2)-dimensional sphere,
horosphere, or hypersphere if the blade a0 ? (Ps1∧s2(a0)), 5
(a0 ∧ Ps1∧s2(a0)), is Euclidean, degenerate, or Minkowski, respectively. Using

(s1 ∧ s2)4(a0 ∧ Ps1∧s2(a0))2 5 (c1 ∧ c2)2(r2c1 2 r1c2)2 (3.13)

(s1 ∧ s2)2 5 (c1 ∧ c2)2 2 (r2c1 2 r1c2)2 (3.14)

we get that (a0 ∧ Ps1∧s2(a0))2 has the same sign as (c1 ∧ c2)2. From this and
Theorem 3.4, we get the conclusions on the intersection.

2. When the two hyperspheres are tangent, then (s1 ∧ s2)2 5 0. If the
axes intersect, then c1 ∧ c2 is Euclidean, so r2c1 2 r1c2 has positive square.
As a result, (s1 ∧ s2)2 , 0 by (3.14), which is a contradiction.

The tangency occurs at infinity if (s1 ∧ s2)2 5 (c1 ∧ c2)2 5 0, which is
equivalent to c1 ? c2 5 1 and r1 5 r2.
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3. When the two hyperspheres neither intersect nor are tangent, then
(s1 ∧ s2)2 . 0. By (3.14), (r2c1 2 r1c2)2 , (c1 ∧ c2)2. If c1 ∧ c2 is not
Minkowski, then (c1 ∧ c2)2 # 0; on the other hand, r2c1 2 r1c2 has a
nonnegative square because it is a vector in c1 ∧ c2. As a result, (r2c1 2
r1c2)2 $ (c1 ∧ c2)2, which is a contradiction. n

3.3. Bundles of Total Spheres

The main content in the previous subsection is a special case of the
content in this subsection.

Definition 3.2. A bundle of total spheres determined by r total spheres
which are represented by Minkowski (n 1 1)-blades B1, . . . , Br is the set
of total spheres represented by l1B1 1 . . . 1 lrBr , where the l’s are scalars.

When B1 ∨ . . . ∨ Br Þ 0, the integer r 2 1 is called the dimension of
the bundle. A one-dimensional bundle is called a pencil. The dimension of
a bundle is allowed to be between 1 and n 2 1. The blade An2r12 5 B1 ∨
. . . ∨ Br can be used to represent the bundle. There are five classes:

1. When a0 ? An2r12 5 0, the bundle is called a concentric bundle. It
is composed of the sphere at infinity and the generalized spheres
whose centers lie in the subspace (a0 ∧ An2r12), of 5n,1.

2. When An2r12 is Minkowski and a0 ? An2r12, a0 ∧ An2r12 Þ 0, the
bundle is called a concurrent bundle. It is composed of total spheres
containing the generalized (n 2 r)-sphere An2r12. In particular, when
An2r12 represents an (n 2 r)-hypersphere, the bundle is composed
of hyperspheres only. a0 ∧ (a0 ? An2r12) represents the axis of
the (n 2 r)-hypersphere and is the intersection of all axes of the
hyperspheres in the bundle.

3. When An2r12 is degenerate and a0 ? An2r12, a0 ∧ An2r12 Þ 0, the
bundle is called a tangent bundle. Any two nonintersecting total
spheres in the bundle are tangent to each other. The tangency occurs
at the point or point at infinity corresponding to the unique null 1-
space in the space An2r12.

4. When An2r12 is Euclidean and a0 ? An2r12, a0 ∧ An2r12 Þ 0, the
bundle is called a Poncelet bundle. A,

n2r12 represents a generalized
(r 2 2)-sphere, which is self-inversive with respect to every total
sphere in the bundle.

5. When a0 ∧ An2r12 5 0, the bundle is called a hyperplane bundle.
It is composed of hyperplanes (1) perpendicular to the (r 2 1)-
plane represented by a0 ∧ A,

n2r12, or (2) whose representations
in the homogeneous model contain the blade An2r12, or (3) passing
through the (n 2 r)-plane represented by An2r12 if the blade
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An2r12 is (1) Euclidean, or (2) degenerate, or (3) Minkowski,
respectively.

4. CONFORMAL TRANSFORMATIONS

It is a well-known fact that the orthogonal group O(n 1 1, 1) is a double
covering of the conformal group M(n) of $n: M(n) 5 O(n 1 1, 1)/^61&.

In Clifford algebra, O(n 1 1,1) is isomorphic to the projective pin group
Pin(n 1 1, 1), which is the quotient of the versor group of 5n11,1 by 5 2
{0}. The group Pin(n 1 1, 1) has four connected components:

• E+(n 1 1, 1), the set of versors which are geometric products of an
even number of positive-squared vectors and an even number of
negative-squared vectors. It is a subgroup of Pin(n 1 1, 1), which
is isomorphic to the proper Lorentz group Lor +(n 1 1).

• E2(n 1 1, 1), the set of versors which are geometric products of an odd
number of positive-squared vectors and an odd number of negative-
squared vectors. The sets E2(n 1 1, 1) and E+(n 1 1, 1) form a
subgroup of Pin(n 1 1, 1), which is isomorphic to the special orthogo-
nal group SO(n 1 1, 1).

• O+(n 1 1, 1), the set of versors which are geometric products of an
odd number of positive-squared vectors and an even number of
negative-squared vectors. The sets O+(n 1 1, 1) and E+(n 1 1, 1)
form a subgroup of Pin(n 1 1, 1), which is isomorphic to the Lorentz
group Lor(n 1 1).

• O2(n 1 1, 1), the set of versors which are geometric products of an
even number of positive-squared vectors and an odd number of
negative-squared vectors. The sets O2(n 1 1, 1) and E+(n 1 1, 1)
form a subgroup of Pin(n 1 1, 1), which is isomorphic to the skew
Lorentz group Lor 2(n 1 1) 5 { f P O(n 1 1, 1). f (*n) 5 det( f )*n}.

Let In11,1 be a unit pseudoscalar. Then the versor action of In11,1 maps
x to 2x for any x in 5n11,1. Therefore,

M(n) 5 Pin(n 1 1, 1)/{In11,1} (4.15)

which serves as the second main theorem on the homogeneous model:

Theorem 4.1. Any conformal transformation in $n can be realized in
the homogeneous model by the versor action of a versor in &n11,1, and vice
versa. Any two versors realize the same conformal transformation if and only
if they are equal up to a nonzero scalar or pseudoscalar factor.
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The paeudoscalar In11,1 induces a duality in &n11,1 under which O+(n 1
1, 1) and O2(n 1 1, 1) are interchanged when n is even, and O+(n 1 1, 1)
and E2(n 1 1, 1) are interchanged when n is odd. So,

M(n) 5 HLor(n 1 1) 5 Lor 2(n 1 1) when n is even
Lor(n 1 1) 5 SO(n 1 1,1) when n is odd

(4.16)

Now we use the versor representation to study a conformal transforma-
tion which is similar to dilation in Euclidean space. This is the tidal transforma-
tion, whose corresponding versor is 1 1 la0c, where l P 5, c P 5n11,1

and c ? a0 5 0.
Under this transformation, the concentric pencil (a0 ∧ c), is invariant.

When c is a point or end, the set {c, 2c} is invariant; when c is a direction,
the hyperplane c, is not invariant, while its sphere at infinity is invariant.

Assume that p is a fixed point in $n and is transformed to a point or
point at infinity q by a tidal transformation with parameter l. It can be proved
that l is a monotonous function of q on line c ∧ p except a point or point
at infinity. Below we list some results on l 5 l(q).

1. When c is a point (Fig. 1):
(a) For any point or point at infinity q on line c ∧ p, let Cc(q) 5

2c21qc; then l(2Cc(q)) 5 1/l(q).
(b) For any point q on line c ∧ p, l(q) 5 (q 2 p)2/[(q 2 c)2 2 ( p

2 c)2].
(c) l( p 2 e6d(p,c)c) 5 e6d(p,c).

Fig. 1. Tidal transformation when c is a point. Right: l 5 l(q). The hyperbola represents the
line c ∧ p. The values of l are between the two branches of the hyperbola for the corresponding
values of q, which are outside. The arrows on the hyperbola indicate the direction of increasing l.
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Fig. 2. Tidal transformation when c is an end. Right: l 5 l(q).

2. When c is an end (Fig. 2):
(a) For any point q on line c ∧ p, l(q) 5 1–2 (1/q ? c 2 1/p ? c).
(b) If q is the end of line c ∧ p other than c, then l(g) 5 2 1/(2p

? c).
3. When c is a direction (Fig. 3):

(a) For any point or point at infinity q on line c ∧ p, l(2Cc(q)) 5
21/l(g).

(b) For any point q on line c ∧ p, l(q) 5 (q 2 p)2/[(q 2 c)2 2 ( p
2 c)2].

(c) Assume p ? c , 0, and let d( p, c) be the hyperbolic distance
from p to the intersection t of line c ∧ p with hyperplane c,

on the branch of $n containing p; then

Fig. 3. Tidal transformation when c is a direction. Right: l 5 l(q).
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l(Cc( p)) 5 2sinh d( p, c), l(t) 5 2tanh
d( p, c)

2

l( p 1 ed(p,c)c) 5 2ed(p,c), l( p 1 e2d(p,c)c) 5 e2d(p,c)

(d) Assume that p ? c 5 0 and that q is on the branch of $n

containing p; then l(q) 5 2e tanh[d( p, q)/2], where e is the
sign of q ? c.
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